On symmetric-tensor-valued isotropic functions of two symmetric tensors
نویسندگان
چکیده
منابع مشابه
Symmetric Tensors and Symmetric Tensor Rank
A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k non-zero vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of them being symmet...
متن کاملSymmetric curvature tensor
Recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. Using this machinery, we have defined the concept of symmetric curvature. This concept is natural and is related to the notions divergence and Laplacian of vector fields. This concept is also related to the derivations on the algebra of symmetric forms which has been discu...
متن کاملOn differentiability of symmetric matrix valued functions
With every real valued function, of a real argument, can be associated a matrix function mapping a linear space of symmetric matrices into itself. In this paper we study directional differentiability properties of such matrix functions associated with directionally differentiable real valued functions. In particular, we show that matrix valued functions inherit semismooth properties of the corr...
متن کاملsymmetric curvature tensor
recently, we have used the symmetric bracket of vector fields, and developed the notion of the symmetric derivation. using this machinery, we have defined the concept of symmetric curvature. this concept is natural and is related to the notions divergence and laplacian of vector fields. this concept is also related to the derivations on the algebra of symmetric forms which has been discus...
متن کاملComputing symmetric rank for symmetric tensors
We consider the problem of determining the symmetric tensor rank for symmetric tensors with an algebraic geometry approach. We give algorithms for computing the symmetric rank for 2 × · · · × 2 tensors and for tensors of small border rank. From a geometric point of view, we describe the symmetric rank strata for some secant varieties of Veronese varieties.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 1973
ISSN: 0033-569X,1552-4485
DOI: 10.1090/qam/445412